

WIR MACHEN FLÜSSIGKEITEN TRANSPARENT.

Bedienungsanleitung ISA und Prozessspektrometer mit BlueScan-Spektrometer

Inbetriebnahme – Wartung – Service

Version dieser Bedienungsanleitung: 2.4 de

Copyright

Gemäß der Schutzvermerke der DIN ISO 16016

"Weitergabe sowie Vervielfältigung dieses Dokuments, Verwertung und Mitteilung seines Inhalts sind verboten, soweit nicht ausdrücklich gestattet. Zuwiderhandlungen verpflichten zu Schadenersatz. Alle Rechte für den Fall der Patent-, Gebrauchsmuster- oder Geschmacksmustereintragung vorbehalten."

Änderungsrecht

Die Firma GO Systemelektronik GmbH behält sich das Recht vor, die vorliegende Bedienungsanleitung jederzeit weiterzuentwickeln, auch ohne dieses vorher anzukündigen oder über Änderungen zu berichten.

Haftungsausschluss

Die Firma GO Systemelektronik GmbH übernimmt keine Garantie dafür, dass die Geräte unter allen Einsatzfällen ordnungsgemäß arbeiten. Mit heutigen technischen Mitteln ist es nicht möglich Steuer-Software so zu entwickeln, dass sie für alle Anwendungsanforderungen fehlerfrei ist. Die Firma GO Systemelektronik GmbH lehnt darum jede Haftung für direkte und indirekte Schäden ab, die sich aus dem Betrieb der Geräte und der in der Bedienungsanleitung beschriebenen Verwendbarkeit ergeben.

Produktbeobachtungspflicht

Im Rahmen unserer Produktbeobachtungspflicht versuchen wir, vor von uns zu erkennenden Gefahren durch das Zusammenwirken von Hard- und Software sowie beim Einsatz von Produkten Dritter zu warnen. Eine Beobachtung ist nur nach ausreichender Information des Endkunden über den geplanten Einsatzzweck und die vorhandenen Hardware- und Softwarekomponenten möglich. Bei Veränderungen der Einsatzbedingungen oder/und durch Austausch von Hardware/Software ist es uns aufgrund der komplexen Beziehungen nicht mehr möglich, alle Gefahren konkret zu beschreiben und auf ihre Wirkung im Gesamtsystem, insbesondere auf unsere Geräte zu überprüfen. Diese Bedienungsanleitung beschreibt nicht sämtliche technischen Eigenschaften des Gerätes und seiner Varianten. Für weitere Informationen wenden Sie sich bitte an die Firma GO Systemelektronik GmbH.

Herstellererklärung

Beim Aufbau des Gerätes ist unter anderem auf den korrekten elektrischen Anschluss, auf Fremdkörper- und Feuchtigkeitsschutz, Schutz gegen Feuchtigkeit infolge übermäßiger Kondensation sowie auf die Erwärmung im sachgemäßen und unsachgemäßen Gebrauch zu achten. Die Durchführung dieser Maßnahmen liegt im Verantwortungsbereich der Monteure, die den Aufbau des Gerätes vornehmen.

© GO Systemelektronik GmbH Faluner Weg 1 24109 Kiel Germany Tel.: +49 431 58080-0 Fax: +49 431 58080-11 www.go-sys.de info@go-sys.de Erstellungsdatum: 16.3.2022 Beschriebene Firmwareversion der BlueBox: 3.00.18 Beschriebene Softwareversionen AMS: 4.2.0.0 Version dieser Bedienungsanleitung: 2.4 de Artikelnummer dieser Bedienungsanleitung: DOC 486 XXXX-D-2.4-BDA-2 Dateiname: DOC 486 XXXX-D-2.4-BDA-2 ISA PS IWS.pdf

Bedeutung der Sicherheitshinweise

Hinweise zur Druckluftspülung

Bei Spektrometern mit Druckluftspülung ist es in den allermeisten Anwendungsfällen sinnvoll, diese auch zu nutzen. Die Druckluftleitung ist an den dafür vorgesehenen Steckanschluss der BlueBox bzw. des Sensormoduls anzuschließen. **()** Verwenden Sie nur ölfreie Kompressoren.

Der Luftverbrauch der Druckluftspülung ist abhängig vom Anschlussdruck (4 – 6 bar) und dem Gegendruck im Medium. Bei 6 bar Anschlussdruck beträgt der Luftverbrauch maximal 1 Liter pro Sekunde.

Beispiel: Bei einem Intervall von 60 Sekunden und einer Spülzeit von 5 Sekunden ist der maximale Luftverbrauch 300 Liter pro Stunde.

Displayabgleich

🚺 Falls das Display nicht, falsch oder nur unter großem Druck reagiert, ist ein Displayabgleich notwendig: Drücken Sie während des Einschaltens des Displays auf das Display bis die Anzeige "touch adjustment? don't touch for normal use" erscheint.

touch adjustment ? don't touch for normal use

Lassen Sie das Display sofort los!

Drücken Sie sofort wieder für mehr als eine Sekunde auf das Display.

touch this small dot

touch this small dot

Ein blinkender Punkt erscheint oben links. Drücken Sie auf den blinkenden Punkt.

Ein blinkender Punkt erscheint unten rechts. Drücken Sie auf den blinkenden Punkt.

Der Abgleich ist abgeschlossen.

ISA - Prozessspektrometer - BlueScan

Inhaltsverzeichnis	
Bedeutung der Sicherheitshinweise	3
Hinweise zur Druckluftspülung	3
Displayabgleich	4
1 ISA Übersicht	6
1.1 Besonderheiten Messkopf ISA-SDU	6
2 ATEX-Hinweise	7
	0
3 Hinweise für die Inbetriebnanme und den Betrieb	۵ ه
3.1 Sichemensinnweise	0
4 Inbetriebnahme	9
4.1 Erstreinigung der beiden Glasscheiben des Messpfades	9
4.2 Basiskalibrierung	10
4.2.1 Ablauf der Basiskalibrierung	10
4.2.2 Flussdiagramm der Basiskalibrierung	11
4.2.3 Einstellen der Messpfadlänge	12
4.2.4 Einstellen der Intensität (Lichtintensität)	13
4.2.4.1 Einstellen der Intensität am Display der BlueBox	13
4.2.4.2 Einstellen der Intensität mit dem Programm AMS	14
4.2.5 Intensitätskalibrierung (Lichtintensität) mit dem Programm AMS	16
4.2.6 Klarwasserkalibrierung	
4.2.6.1 Klarwasserkalibrierung am Display der BlueBox	
4.2.6.2 Klarwasserkalibrierung mit dem Programm AMS	
4.2.6.3 Melaungen auf aem Display die Klarwasserkalibrierung betreffend	21
4.3 Anwendungskallbrierung	22
4.3.1 Ubersicht Anwendungskalibrierung	23 24
4.3.2 Flussdiagramm der Anwenaungskalibrierung	2424 عد
4.3.5 Aumenmen der Messreine	23 25
4.3.5 Anwendungsheisniel TOC/CSR in Prozesswasser	25 26
	20
5 Wartung	29
5.1 Wartungshinweise	29
5.2 Wartungsempfehlungen	29
5.3 Reinigung des Messkopfes	30
5.3.1 Ablauf der Reinigung	31
6 Werksservice	32
7 Prozesssnektrometer (Durchflusseinheit) Übersicht	33
7.1 Inbetriebnahme und Basiskalibrierung	
7.2 Wartung	
7.2.1 Wartunasempfehlunaen	
7.2.2 Reinigung des Prozessspektrometers	35
7.2.2.1 Reinigung ohne Demontage der Spektrometeroptik	35
7.2.2.2 Reinigung mit Demontage der Spektrometeroptik	36
7.3 Werksservice	38
8 BlueScan	39
8.1 Einstellen der Messspaltlänge	40
Anhang – ISA Parameterberechnung	41

1 ISA Übersicht

Dieser Teil dieser Bedienungsanleitung beschreibt die Inbetriebnahme, die Wartung und den Service des ISA-Spektrometers von GO Systemelektronik.

Das ISA-Spektrometer mit seinem in situ tauchfähigen Messkopf ist in drei Ausführungen erhältlich:

- ISA TS BlueBox TS mit integrierter Spektrometer-Sensoreinheit¹
- ISA T4 BlueBox T4 mit einem oder mehreren externen Spektrometer-Sensormodulen
- **ISA mobil** ISA TS mit zwei Akkumulatoren und einem Einschaltmodul (Power Management Module PMM) integriert in einem Koffer

Den Messkopf gibt es in zwei Ausführungen:

- **Messkopf ISA** Der Messpfad ist mit einem Schraubgewinde stufenlos einstellbar von 0,5 bis 20 Artikel-Nr. 461 6002 mm. Der Messkopf hat eine integrierte Druckluftreinigung.
- **Messkopf ISA-SDU** Artikel-Nr. 461 6010 Der Messkopf ist in einem Durchflussgehäuse mit integriertem Reinigungswischer montiert und hat keine Druckluftreinigung. siehe 1.1 Besonderheiten Messkopf ISA-SDU

Die Bedienung erfolgt am Display der BlueBox (Menübedienung) und mit der BlueBox PC Software².

Hinweis: Eine vollständige Beschreibung der Bedienung des ISA-Spektrometers finden Sie in der beiliegenden *Bedienungsanleitung ISA-Spektrometer*.

Die Produkte von GO Systemelektronik werden ständig weiterentwickelt, daher können sich Abweichungen zwischen dieser Bedienungsanleitung und dem ausgelieferten Produkt ergeben. Bitte haben Sie deshalb Verständnis, dass aus dem Inhalt dieser Bedienungsanleitung keine juristischen Ansprüche abgeleitet werden können.

1.1 Besonderheiten Messkopf ISA-SDU

Artikel-Nr. 461 6010

• Der Messkopf der SDU-Version hat keine Druckluftreinigung; das Messkopfkabel hat keine Druckluftleitung und ist daher flexibler.

- Das Kabel des SDU-Messkopfes hat eine Länge von 1 m, andere auf Anfrage.
- Der SDU-Messkopf wird in einer Durchflussarmatur mit integriertem Reinigungswischer montiert.
- Der SDU-Messkopf ist für den Betrieb mit einem Reinigungswischer ausgelegt.
- Der Messpfad ist mit einem Schraubgewinde stufenlos von 0,5 bis 20 mm einstellbar. Der SDU-Messkopf hat auf jeder Seite des Messpfades einen mechanischen Stopp.

Die minimale Messpfadlänge beträgt daher 0,5 mm.

Die Wischerdicke muss zum Spalt des Messpfades passen.

Der Standardbereich der Spaltbreite beträgt 0,5 bis 5 mm. Beiliegend gibt es zwei Spacer (Distanzscheiben) mit 0,5 mm und 1 mm Dicke, andere auf Anfrage.

¹ Weitere Sensoreinheiten können mit externen Sensormodulen über die CAN-Bus-Schnittstelle angeschlossen werden.

² hier insbesondere mit der Software AMS

2 ATEX-Hinweise

Die Leitlinie 2014/34/EU, bekannt als ATEX-Richtlinie, fordert im Anhang II die Erfüllung grundlegender Sicherheitsanforderungen für Geräte, die innerhalb der EU für den Betrieb in explosionsgefährdeten Bereichen vorgesehen sind.

Gefahr: Das Spektrometer-Sensormodul muss sich unbedingt außerhalb des explosionsgefährdeten Bereiches befinden.

Warnung: Die Versorgungsspannung darf nicht am Gehäuse des Spektrometer-Sensormoduls anliegen, das Gehäuse des Spektrometer-Sensormoduls muss immer geerdet sein.

Vorsicht: Der elektrische Widerstand zwischen der unteren Augenschraube des Messkopfes und der Erdungsschraube des Spektrometer-Sensormoduls muss kleiner als 50 Ω sein.

Kenngrößen:

Elektrische Daten: Umgebungstemperaturbereich:

maximale Eingangsspannung des Sensormoduls:36 VDCMesskopf:0 °C bis +110 °CSensormodul:0 °C bis +40 °C

Besondere Bedingungen für die sichere Anwendung:

Die Umgebungstemperatur des Messkopfes beträgt 0 °C bis +110 °C. Das Sensormodul muss außerhalb explosionsgefährdeter Bereiche installiert werden.

Die Umgebungstemperatur des Sensormoduls beträgt 0 °C bis +40 °C.

Die grundlegenden Sicherheits- und Gesundheitsanforderungen werden erfüllt durch Übereinstimmung mit:

DIN EN 60079-0:2014-06 DIN EN 60079-28:2016-04

Allgemeine Anforderungen Optische Strahlung 'op is'

Kennzeichnung des Messkopfes: Lasergravur

Kennzeichnung des Sensormoduls: abriebfester und beständiger Aufkleber an der rechten Außenseite

Spektrometer-Sensormodul

^{*} Falls ein gesondertes ATEX-Zertifikat beiliegt, gilt dessen Kennzeichnung. Auf Wunsch ist II 2/- G Ex op is IIB T4 Gb/- lieferbar.

3 Hinweise für die Inbetriebnahme und den Betrieb

Geben Sie die Geräte nie ohne Bedienungsanleitung an andere Personen weiter. Der Hersteller haftet nicht für unsachgemäße oder anwendungsfremde Verwendung.

Diese Geräte sind gemäß Niederspannungsrichtlinie und der Sicherheitsbestimmungen für elektronische Messgeräte ausgeführt.

Die einwandfreie Funktion und Betriebssicherheit der Geräte kann nur dann gewährleistet werden, wenn bei der Benutzung die allgemein üblichen Sicherheitsvorkehrungen sowie die speziellen Sicherheitshinweise in dieser Bedienungsanleitung beachtet werden.

Vor dem Verbinden mit dem Stromversorgungsnetz ist sicherzustellen, dass die Netzspannung geeignet ist.

Die einwandfreie Funktion und Betriebssicherheit der Geräte kann nur unter geeigneten Umgebungsbedingungen eingehalten werden.

Wird das Gerät von einer kalten in eine warme Umgebung transportiert, so kann durch Kondensatbildung eine Störung der Gerätefunktion eintreten. In diesem Fall muss die Angleichung der Gerätetemperatur an die Raumtemperatur vor einer erneuten Inbetriebnahme abgewartet werden.

Wartungs- und Reparaturarbeiten dürfen nur von einer von GO Systemelektronik autorisierten Fachkraft ausgeführt werden.

Wenn anzunehmen ist, dass die Geräte nicht mehr gefahrlos betrieben werden können, so sind sie außer Betrieb zu setzen und vor einer weiteren Inbetriebnahme durch Kennzeichnung zu sichern.

Die Sicherheit des Benutzers kann durch die Geräte beeinträchtigt sein, wenn sie zum Beispiel sichtbare Schäden aufweisen, nicht mehr wie vorgeschrieben arbeiten, längere Zeit unter ungeeigneten Bedingungen gelagert wurden oder extremen Transportbedingungen ausgesetzt waren.

In Zweifelsfällen benachrichtigen Sie bitte den Hersteller GO Systemelektronik GmbH und schicken ggf. die Geräte zur Reparatur bzw. zur Wartung ein.

Ältere Messköpfe haben Glasscheiben aus Quarzglas. Neue Messköpfe haben Glasscheiben aus Saphirglas: Saphirglas ist beständiger als Quarzglas. Baujahr ≤ 2018 ⇔ Quarzglas Baujahr ≥ 2019 ⇔ Saphirglas Revisionsjahr ≥ 2019 ⇔ Saphirglas In Zweifelsfällen wenden Sie sich an GO Systemelektronik.

Vorsicht: Quarzglasscheiben sind nicht geeignet für den Kontakt mit starken organischen Lösungsmitteln (z.B. Aceton), starken Säuren und starken Basen.

3.1 Sicherheitshinweise

Vorsicht: Der Messkopf darf weder Unterdruck noch Druckschlägen ausgesetzt werden.

Vorsicht: Das Messkopfkabel darf nicht in einem engeren Radius als 40 mm gebogenoder gar geknickt werden.ISA-SDU: Lichtwellenleiter nicht knicken.

Vorsicht: Der Messkopf darf nicht an dem Messkopfkabel aufgehängt werden, benutzen Sie die Schraubaugen am Messkopf.

ISA – Inbetriebnahme

4 Inbetriebnahme

Wenn Sie das Messsystem installiert haben, schalten Sie die Spannungsversorgung der BlueBox ein. Während der Initialisierung erkennt die BlueBox das Spektrometer automatisch.

Bei der ersten Inbetriebnahme muss eine **Basiskalibrierung** des Messsystems durchgeführt werden. Die Basiskalibrierung wird im Abschnitt 4.2 beschrieben.

4.1 Erstreinigung der beiden Glasscheiben des Messpfades

Vor der Kalibrierung sind die beiden Glasscheiben des Messpfades zu reinigen. Achten Sie bei der Reinigung auf eventuell anhaftende Partikel, die Sie vor dem Verwenden einer Bürste oder eines Tuches mit Druckluft entfernen sollten, damit die Glasscheiben bei der Reinigung nicht zerkratzen.

Ältere Messköpfe haben Glasscheiben aus Quarzglas.

Neue Messköpfe haben Glasscheiben aus Saphirglas: Saphirglas ist beständiger als Quarzglas.Baujahr ≤ 2018 ⇔ QuarzglasBaujahr ≥ 2019 ⇔ SaphirglasRevisionsjahr ≥ 2019 ⇔ SaphirglasIn Zweifelsfällen wenden Sie sich an GO Systemelektronik.

Vorsicht: Quarzglasscheiben sind nicht geeignet für den Kontakt mit starken organischen Lösungsmitteln (z.B. Aceton), starken Säuren und starken Basen.

Spülen Sie den Messkopf mit Leitungswasser, dadurch wird evtl. vorhandener lagerungsbedingter Schmutz entfernt.

Setzen Sie mit einem fettfreien alkalischen Laborglasreiniger eine Lösung (Konzentration 2 – 3 %) mit Leitungswasser an. Reinigen Sie dann mit dieser Lösung die Glasscheiben mit einem Brillenputztuch.

Zuletzt den Messkopf mit Leitungswasser abspülen.

Die manuelle Reinigung der Glasscheiben muss im Messbetrieb regelmäßig wiederholt werden, siehe *5. Wartung*.

Sofern Sie die Möglichkeit haben und die Messung in stark verschmutzten Medien stattfindet, ist der Anschluss an die Druckluftspülung zu empfehlen.

4.2 Basiskalibrierung

- Die Basiskalibrierung dient dazu, den Messbereich des Spektrometers optimal auszunutzen und die individuellen Eigenheiten des Messsystems zu unterdrücken.
- Die Digitalwerte (Counts) der Rohspektren werden durch vier Gegebenheiten bestimmt:
 - ⇒ der Messbereich des AD-Wandlers, Werkseinstellung 0 bis 30.000
 - ⇒ die Länge des Messpfades
 - ⇒ die Anzahl der Lichtblitze pro Einzelmessung (Intensität)
 - ⇒ das Messmedium

i Hinweis: Jede Änderung am Messaufbau erfordert eine Neukalibrierung.

4.2.1 Ablauf der Basiskalibrierung

Die Basiskalibrierung besteht aus 4 Schritten:

- 1. Starteinstellung der Messpfadlänge auf 10 mm; falls Sie bereits Erfahrungen mit Ihrem Anwendungsmedium haben, können Sie diese hier berücksichtigen. siehe *4.2.3 Einstellen der Messpfadlänge*
- 2. Starteinstellung der Intensität (Anzahl der Lichtblitze pro Einzelmessung) auf 25; falls Sie bereits Erfahrungen mit Ihrem Anwendungsmedium haben, können Sie diese hier berücksichtigen. siehe *4.2.4 Einstellen der Intensität (Lichtintensität)*.
- 3. Anpassung der Intensität^{*} siehe das Flussdiagramm auf der nächsten Seite und *4.2.5 Intensitätskalibrierung (Lichtintensität)*
- Anpassung der Messpfadlänge siehe das Flussdiagramm auf der nächsten Seite und 4.2.6 Klarwasserkalibrierung Die Klarwasserkalibrierung wird auch Nullkalibrierung genannt.

Auf die Basiskalibrierung folgt die anwendungsspezifische Kalibrierung, siehe 4.3 Anwendungskalibrierung.

^{*} Die Anpassung der Intensität ist das wechselseitige Anpassen der Lichtintensität (= Anzahl der Lichtblitze pro Messung) und der Messpfadlänge. Das Anpassen der Lichtintensität wird hier nicht ganz korrekt auch als Intensitätskalibrierung bezeichnet. Genaugenommen ist die Anpassung der Intensität die eigentliche Intensitätskalibrierung.

4.2.2 Flussdiagramm der Basiskalibrierung

¹ MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum
 ² MVA = höchster Wert eines Extinktionsspektrums / Maximum Value of an Absorbance spectrum
 Ab einem MVA von 1,3 steigend beginnt der nichtlineare Bereich, über 1,7 ist das Signal verrauscht.

4.2.3 Einstellen der Messpfadlänge

Die Messpfadlänge verstellen Sie mit der Einstellschraube an der Unterseite des Messkopfes. Messen Sie die eingestellte Messpfadlänge mit einem Messschieber. Achten Sie auf die Optik.

Sie können das Einstellen der Messpfadlänge durch die Verwendung von Spacern vereinfachen.

Lieferbar in den Stärken 0,5 mm | 1 mm | 5 mm | 10 mm Artikelnummer 330 9399-X

Ein langer Messpfad (15 – 20 mm) wird bei klarem Wasser verwendet (Trinkwasserüberwachung, Grundwasserkontrolle, Flussmonitoring). Ein kurzer Messpfad (1 – 3 mm) wird bei Abwasser oder der Prozessüberwachung verwendet (Weine, Sirup, Öle).

In der Regel gilt: Je verschmutzter oder lichtabsorbierender das Medium ist, desto kleiner ist der Messpfad.

i Hinweis: siehe auch 1.1 Besonderheiten Messkopf ISA-SDU

4.2.4 Einstellen der Intensität (Lichtintensität)

Die Xenon-Lampe blitzt mit konstanter Intensität und konstanter Frequenz. Der Wert der Intensität bestimmt die Integrationszeit, d.h. die Anzahl der Lichtblitze pro Einzelmessung.

Die Einstellung der Intensität ist sowohl am **Display** der BlueBox als auch mit dem **Programm AMS** als Teil der BlueBox PC Software möglich.

Der die Anzahl der Lichtblitze pro Einzelmessung ist anwendungsabhängig und liegt in der Praxis zwischen 3 und 50.

04:19:52 30000 Spektrometer 1 21677 Menü \oplus 04:19:52 Hauptmenü 1/2 21.11.14 Spektrometer System Wartung Hilfe Calculated BSA00123-A Das Passwort entnehmen Sie Sensorliste BSA00123-B dem mitgelieferten Konfigurati-SAK254 Aktorliste onsdatenblatt der BlueBox, siehe Abschnitt 1 dort BlueBox <---<---Password (PIN). Spektrometer Passwort 1 2 3 Wartung Tabell 4 5 6 Diagramm ∬ 7 8 9 * * * * Ausgewählt Info 0 < <---Spektrometer ISA VE-Wasser-Kalibrierung ISA Spülung ein ISA Spülintervall Intensitätssp. Pfadlänge Extinktio Rohspektrum nsp. <-2 3 Intensitätssp. [18] 1 4 5 6 8 9 7 0 < Ok Drücken auf < Ok> speichert den Wert. <-

4.2.4.1 Einstellen der Intensität am Display der BlueBox

GO Systemelektronik GmbH Faluner Weg 1 24109 Kiel Germany Tel.: +49 431 58080-0 Fax: -58080-11 Seite 13 / 43 www.go-sys.de info@go-sys.de

4.2.4.2 Einstellen der Intensität mit dem Programm AMS

Starten Sie das Programm AMS, z.B. wie hier über das Programm BlueBox SQL:

Beispiel: Konfiguration mit nur einem angeschlossenen Spektrometer und dem anwendungsspezifischen Parameter SAK254 (standardmäßig eingerichtet).

		Senso	or-Setup	Fenste	r:
Sensor Set	up [ISA00	0011]			×
Sensor Name Kommentar	Intensity UV-VIS			(b) Konfig	Klick auf <konfig> öffnet das Konfigurationsfenster</konfig>
Parameter Einheit				Roh. ReKal.	SYSTEMELEKTRONIK
Vorkomma Nachkomma	5 🌩 0 🌧	Min. Messwert Max. Messwert	0		Aktueller Wert
Intervall Speichere	60 🍨	Mittlungen Alle Messwerte	5 👤		14410 03.06.2018 14:24:12
Formel akti					
G Übertrage	n 🖨 Soe	ichem 🚺 🏊 L	aden	So Druck	en 🖸 🔊 Schließen
Zeichen:0					AVRDAM 4.10

Sensor-Konfig	urationsfenster:		
ISA Config		X	
Zeiss Seriennummer	086329		
Zeiss-Coefficients 3/4. order fit	I [
C0 182,205	Spülzeit	3	
C1 2,16947E00	Spülinter∨all Eing	abefeld der Inten	sität
C2 -8,0195E-06	Wartezeit	10	
C3 -6,81072E-07	Intensität	34	
C4 0,0E00	Pfadlänge [mm]	30 🔁	
Checksumme 103012	Aufheizen		
Optionen			
🔲 Spülung durchführen	🦳 Manueller Star	rt	
🔽 Extinktionsspektrum senden	🔽 Rohspektrum	senden	
🔲 Spektren normalisiert auf 1/m s	sena		
Max. Kalibrierintervall [in tagen]	0		
🔁 <u>Ü</u> b	pertragen		

Klick auf <Übertragen> überträgt die Einstellungen über die BlueBox auf das Spektrometer-Sensormodul.

GO Systemelektronik GmbH Faluner Weg 1 24109 Kiel Germany Tel.: +49 431 58080-0 Fax: -58080-11 Seite 15 / 43 info@go-sys.de

ISA – Inbetriebnahme

4.2.5 Intensitätskalibrierung (Lichtintensität) mit dem Programm AMS

Bezug: Die Intensitätskalibrierung **in VE-Wasser** ist Teil der Anpassung der Intensität. Die Anpassung der Intensität dient dazu, den Messbereich im Anwendungsmedium so auszunutzen, dass die Digitalwerte der Extinktion innerhalb des linearen Bereiches liegen. Der Wert der Extinktion ist abhängig von der Intensität (Lichtintensität), d.h. der Anzahl der Lichtblitze pro Einzelmessung.

Die Intensitätskalibrierung in VE-Wasser stellt die Anzahl der Lichtblitze pro Einzelmessung so ein, dass der MVR^{*} des kalibrierten Rohspektrums unterhalb 29200 liegt.

Voraussetzung:

Spülen Sie den Messkopf in VE-Wasser und tauchen Sie direkt danach den Messkopf in VE-Wasser.

ne BlueBox	
Datei Einstellungen Optionen Visualisierung Hilfsprogramme Hilfe	
AMS [SQL]	
1. Auswallt der BlueBox	
TS1234 Blue	
Firmware: 2.78.64 3. Doppelklick auf Intensity öffnet das Sensor-Setup-Fenster des Spel	trometers
E - E TS1234 E - 220 bsa00604	
BA00001	
SAK254 rationsdatenblatt der BlueBox unter "2. Network".	^
Drücken Sie die RETURN-Taste.	
• (grüner Kreis) Das Password ist gültig.	
• (grauer Kreis) Das Password ist ungültig.	
Passwort	
Sensor Setup [ISA000011]	
Sensor	
Name Intensity Konfig	
Parameter Roh > oder < ReKal.>	
Einheit Öffnet das Spektrenfenster.	
Vorkomma 5 Amin. Messwert 0	
Nachkomma 0 🚔 Max. Messwert 30000	
Intervall 60 🔿 Mittlungen 5 🍨 14410	
Speichere Alle Messwerte 03.06.2018 14:24:12	
Formel aktiv	
Zeichen:0 AVRDAM 4.10	

Starten Sie das Programm AMS, wie hier z.B. über das Programm BlueBox SQL:

^{*} MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum

Die digitalen Messwerte des Spektrums werden im Spektrenfenster als Liniendiagramm dargestellt. Hier ein Beispiel für ein übersteuertes Spektrum, d.h. die Intensität ist zu hoch.

Die Intensitätskalibrierung in VE-Wasser stellt die Anzahl der Lichtblitze pro Einzelmessung so ein, dass der MVR^{*} des kalibrierten Rohspektrums unterhalb 29200 liegt.

Ansicht Spektrenfenster:

Voraussetzung: Spülen Sie den Messkopf in VE-Wasser und tauchen Sie direkt danach den Messkopf in VE-Wasser.

- 1 Falls Spektren übersteuert sind, wird es in diesem Textfeld angezeigt.
- 2 Wechseln Sie in die Ansicht der Rohspektren.
- (3) Das aktuelle Rohspektrum wird nach der nächsten Messung angezeigt, oder nach Klick auf die Schaltfläche <Messung starten>.
- (4) Klicken Sie auf die Schaltfläche <Intensitätskalibrierung> und dann im Bestätigungfenster auf <Ja>.
- (5) Mit der nächsten Messung startet die Kalibrierung. Während des Kalibriervorgangs blinkt das Lampensymbol unten links gefolgt vom Sanduhrsymbol für die Übertragung der Spektrendaten auf die BlueBox. Die Intensität, d.h. die Anzahl der Lichtblitze pro Einzelmessung, wird automatisch eingestellt.
- Nach Ende der Intensitätskalibrierung wird das kalibrierte Spektrum angezeigt.
 Die Intensitätskalibrierung ist abgeschlossen.

Danach wird mit jeder Messung ein neues Rohspektrum dargestellt, jedoch nicht mehr als die letzten 20.

^{*} MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum

4.2.6 Klarwasserkalibrierung

Bezug: Die Klarwasserkalibrierung¹ des Spektrometers erfolgt **in zweifach destilliertem Wasser**. Mit der Klarwasserkalibrierung werden die individuellen Eigenschaften des Messsystems als Referenz erfasst. Die folgenden Messwerte werden entsprechend angepasst.

Die Klarwasserkalibrierung ist sowohl am Display der BlueBox als auch mit dem Programm AMS als Teil der BlueBox PC Software möglich. Diese Klarwasserkalibrierung sollte in regelmäßigen Abständen (alle 1 bis 3 Monate, je nach Anwendung) wiederholt werden.

4.2.6.1 Klarwasserkalibrierung am Display der BlueBox

Voraussetzung:

Spülen Sie den Messkopf in Klarwasser und tauchen Sie direkt danach den Messkopf in Klarwasser.

- Der MVR² sollte in einem Bereich von ca. 26 000 bis 29.500 Counts liegen.
- Falls der MVR² nicht in diesem Bereich liegt, passen Sie die Messpfadlänge an oder wiederholen Sie die Intensitätsanpassung.

¹ auch Nullkalibrierung genannt ² MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum

4.2.6.2 Klarwasserkalibrierung mit dem Programm AMS

Starten Sie das Programm AMS, wie hier z.B. über das Programm BlueBox SQL:

BlueBox	
Datei Einstellungen Optionen Visualisierung Hilfsprogramme Hilfe	
Datei Einstellungen Hilfe	
BlueBox I. Auswahl der BlueBox	
B-326 bsa00604	
Intensity - 3. Doppelklick auf Intensity öffnet das Sensor-Setup-Fenster des Spek	trometers.
····⊙ n/c	
n/c	
2. Passworteingabe. Das Passwort finden Sie im Konfigu	I-
rationsdatenblatt der BlueBox unter "2. Network".	
Didcken sie die Keitokin-Taste.	
(gruner Kreis) Das Password ist guitig.	
(grauer Kreis) Das Password ist ungultig.	
Passwort	
Sensor Setup [ISA000011]	
Name Intensity	
Kommentar	
Parameter Roh. Klick auf <roh.> Oder <rekal.></rekal.></roh.>	
Vorkomma 5 🌩 Min. Messwert 0	
Nachkomma 0 Aktueller Wert	
Intervall 60 🔿 Mittlungen 5 🎒 14410	
Speichere Alle Messwerte	
Formel aktiv	
🔁 Übertragen 🔄 Speichern 🔗 Laden 🏷 Drucken 😥 🖒 Schließen	
Zeichen:0 AVRDAM 4.10	

Die digitalen Messwerte des Spektrums werden im Spektrenfenster als Liniendiagramm dargestellt. Falls kein Spektrum dargestellt ist, warten Sie bis zur nächsten Messung.

Ansicht Spektrenfenster:

Voraussetzung: Spülen Sie den Messkopf in zweifach destilliertem Wasser und tauchen Sie direkt danach den Messkopf in zweifach destilliertes Wasser.

- (1) Wechseln Sie in die Ansicht der Rohspektren.
- (2) Das aktuelle Rohspektrum wird nach der nächsten Messung angezeigt, oder nach Klick auf die Schaltfläche <Messung starten>.
 - Der MVR^{*} sollte in einem Bereich von ca. 26000 bis 29500 Counts liegen.
 - Falls der MVR^{*} nicht in diesem Bereich liegt, passen Sie die Messpfadlänge an oder wiederholen Sie die Anpassung der Intensität.
- (3) Klicken Sie auf die Schaltfläche <Klarwasser-Kalibrierung> und dann im Bestätigungfenster auf <Ja>, dann im folgenden Fenster auf <OK>.
- (4) Während des Kalibriervorgangs erscheint unten links das Waagensymbol. Die Berechnung der Kalibrierung ist abgeschlossen, sobald das Waagensymbol verschwunden ist.
- 5 Meldungsfeld der Statusmeldungen

Meldungen die Klarwasserkalibrierung betreffend:

- Intensität zu hoch Der kombinierte MVR^{*} des Rohspektrums und des Dunkelspektrums ist größer als 32000.
- **Bitte Klarwasser Kalibrierung durchführen** Das Klarwasserkalibrierungsintervall ist überschritten. ⇒ Klarwasserkalibrierung durchführen.

^{*} MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum

ISA – Inbetriebnahme

Zum Überprüfen der Klarwasserkalibrierung wechseln Sie in die Ansicht der Extinktionsspektren:

Die Klarwasserkalibrierung ist abgeschlossen. Sie können das Programm beenden.

Hinweis: Das Rohspektrum mit dem kalibriert wurde, ist als Klarwasserspektrum gespeichert und wird mit Klick auf die Schaltfläche <Klarwasser Spektrum> in der Ansicht der Rohspektren angezeigt.

4.2.6.3 Meldungen auf dem Display die Klarwasserkalibrierung betreffend

Überschreitet oder unterschreitet nach der Klarwasserkalibrierung ein maximaler Rohwert (MVR¹) bestimmte Bereiche, erscheinen auf dem Display der BlueBox Meldungen.

Warnung! Intensität zu hoch!

Der MVR¹ ist größer als 29500 counts. Bereich der Spektralauflösung: 2 – 160 ▶ Lichtintensität² verkleinern

Warnung! Intensität zu klein!

Der MVR¹ ist kleiner als 24000 counts. Bereich der Spektralauflösung: 2 – 160 ▶ Lichtintensität² vergrößern

Achtung! Bitte Spektrometer reinigen!
Der MVR¹ ist kleiner als 500 counts.
Bereich der Spektralauflösung: 10 – 30
▶ Spektrometer reinigen³

³ siehe 5.3 Reinigung des Messkopfes (ISA) oder 7.2 Wartung (Prozessspektrometer)

¹ MVR = höchster Digitalwert eines Rohspektrums / Maximum digital Value of a Raw spectrum

² Lichtintensität = Anzahl der Lichtblitze pro Einzelmessung, siehe 4.2.4 Einstellen der Intensität (Lichtintensität)

4.3 Anwendungskalibrierung

Für die Berechnung einer Kalibrierung auf den zu messenden Parameter einer spezifischen Anwendung ist es notwendig, dass für den jeweiligen Parameter vom Auftraggeber **Referenzwerte** aus chemischen Laboranalysen und die jeweils dazugehörigen Spektren zur Verfügung gestellt werden.

Bei einer **Einparameterkalibrierung** wird einem Spektrum ein Referenzwert zugeordnet, bei einer **Mehrparameterkalibrierung** wird einem Spektrum mehr als ein Referenzwert zugeordnet.

Die Spektrendaten eines Spektrums plus ein oder mehrere dazugehörige Messwerte werden als **Referenzwertepaar** bezeichnet.

Die **Anzahl der mindestens notwendigen Referenzwertepaare ist 25**, eine kleinere Anzahl reduziert die Qualität der Kalibrierung und führt in der Folge zu fehlerhaften Parameterwerten.

Aus den Referenzwertepaaren werden dann mit der Software **ISA plus**¹ und der Software **ISA plus manager**¹ die **Kalibrierdaten** errechnet und für jeden Parameter einzeln als **Kalibrierdateien** im xml-Format (mit SQI) oder im txt-Format (ohne SQI) erstellt.

SQI (Spektraler-Qualitäts-Index) Der SQI ist ein Maß für die statistische Zuverlässigkeit der Messergebnisse und wird für jeden Parameter laufend berechnet. Voraussetzung dafür ist die Erzeugung einer entsprechenden Kalibrierdatei im xml-Format.

Danach müssen diese Kalibrierdaten mit der Software AMS von einem angeschlossenen PC über die BlueBox auf die Spektrometer-Sensoreinheit übertragen werden.²

Hinweis: Die erreichbaren Genauigkeiten können von externen Gegebenheiten (u.a. Eigenschaften des Mediums) beeinflusst werden. Eine Gewährleistung auf die Güte der spektroskopischen Auswertung kann deshalb nicht gegeben werden.

¹ Falls Sie nicht über die Software ISA plus /ISA plus manager verfügen, wenden Sie sich bitte zur Berechnung der Kalibrierkoeffizienten an GO Systemelektronik.

² Lassen Sie diesen Vorgang nur von geschulten Personen durchführen.

4.3.1 Übersicht Anwendungskalibrierung

4.3.2 Flussdiagramm der Anwendungskalibrierung

* Falls Sie nicht über die Software ISA plus manager/ISA plus verfügen, wenden Sie sich an GO Systemelektronik.

4.3.3 Aufnehmen der Messreihe

Ein Referenzwertepaar besteht aus der chemischen Analyse einer Probe und Spektrendaten, die möglichst zeit- und ortsgleich mit der Entnahme der Probe aufgenommen wurden.

Achten Sie bitte auch darauf, dass die Referenzwertepaare möglichst gleichmäßig über den gesamten zu erwartenden Messbereich verteilt sind.

Es empfiehlt sich hier, für das Messintervall des Spektrometers einen Wert von ≥ 60 s zuwählen.

Außerdem empfiehlt es sich, für eine entnommene Probe 2 bis 3 Spektren zu messen, über einen Vergleich lassen sich Abweichungen durch Verschmutzung, Luftbläschen etc. erkennen.

siehe auch Anhang – ISA-Param

4.3.4 Erstellung einer Kalibriertabelle

Die Kalibriertabelle muss im xls- oder xlsx-Dateiformat abgespeichert werden.

Aufbau der Kalibriertabelle:

	Parameter Einheit	Parameter Einheit	 Parameter Einheit
Probennummer 1	Wert 11	Wert 12	 Wert 1n
Probennummer 2	Wert 21	Wert 22	 Wert 2n
Probennummer 3	Wert 31	Wert 32	 Wert 3n
Probennummer 4	Wert 41	Wert 42	 Wert 4n
Probennummer n	Wert n1	Wert n2	 Wert nn

Probennummer* 1-n: wie Eintrag "Probennummer" in Spectrum Visual, AMS oder Menübedienung

Parameter: wie Eintrag "Parameter" im Sensor Setup Fenster

Einheit:wie Eintrag "Einheit" im Sensor Setup FensterAusnahme ist der Schrägstrich "/", verwenden Sie stattdessen ein nachgestelltes -1 (mg/l \Rightarrow mg l-1)

Hinweis: Das Dezimaltrennzeichen der Werte kann sowohl das Komma als auch der Punkt sein. Verwenden Sie für daher bei den Werten Komma und Punkt ausschließlich als Dezimaltrennzeichen, und nicht als Tausendertrennzeichen.

^{*} In anderen Zusammenhängen auch Probenname genannt.

4.3.5 Anwendungsbeispiel TOC/CSB in Prozesswasser

Aufnehmen der Messreihe

Für die anwendungsspezifische Kalibrierung wurden hier 5^{*} Referenzwertepaare aufgenommen. Ein Referenzwertepaar besteht aus den Werten der TOC-Laboranalyse, den Werten der CSB-Laboranalyse und den dazugehörigen Spektrendaten. Es handelt sich hier also um eine Mehrparameterkalibrierung.

Die Spektren wurden 2-fach aufgenommen, um störungsbedingte Abweichungen zu erkennen. Für die Kalibrierung wird nur jeweils ein Spektrum verwendet.

Probenr.	Verdünnung	Probenahme	Zeit	TOC-Labor [mg/l]	CSB-Labor [mg/l]	Bemerkung
TC1	UO-Wasser	12:45	09:15 - 12:55	1,56	7,00	26.05.
TC2	K-rein	13:45	13:00 - 13:48	7,29	49,00	26.05.
тсз	K-rein 1:2 K-unrein	15:45	14:55 - 15:50	19,70	113,00	26.05.
TC4	K-rein 1:3 K-unrein	07:45	07:19 - 07:50	23,40	118,00	27.05.
TC5	K-unrein	08:30	07:54 - 08:35	27,10	141,00	27.05.

Probenaufnahme TOC/CSB 26.05. und 27.05.

UO = Umkehrosmose K = Konzentration

* Eigentlich sind mindestens 25 Referenzwertepaare notwendig, zur besseren Übersicht werden hier nur 5 Referenzwertepaare dargestellt.

In diesem Beispiel erfolgt die Eingabe der Probenummern im Programm Spectrum Visual.

() Hinweis: Oftmals ist es nützlich, die Probennummern direkt während der Spektrenaufnahme mit der BlueBox-Menübedienung (siehe Bedienungsanleitung ISA-Spektrometer dort 8.2 Die Wartungsmenüs) oder dem Programm AMS einzugeben (siehe Bedienungsanleitung ISA-Spektrometer dort 9.2.2.4 Funktionen der Schaltflächenleiste dort Als Probe speichern).

Eingabe der 5 Probennummern in Spectrum Visual

Eine vollständige Beschreibung des Programms Spectrum Visual finden Sie in der *Bedienungsanleitung ISA-Spektrometer* dort *11 Spectrum Visual*.

Auswahl der Spektren und Export der Spektrendaten in eine JCAMP-DX-Datei

Hinweis: Klick auf 🛃 in der senkrechten Schaltflächenleiste markiert alle Einträge die Probennummern haben.

Zusammenfassen der Referenzwertepaare in der Kalibriertabelle im xls- oder xlsx-Format

Eingabe	×
Eingabe	×
_ Probennummer:	
_ ТС5	
Abbrechen 🗶	√ <u>o</u> k

<mark> </mark>	trum Visua	lisierung	
Datei H	Hilfe		
🛄 Diagr	amm 🕨		
🖻 Expo	rtieren 🔸	🗟 JCAMP-DX	
👌 Impo	rtieren 🔸	B+L Format	1
🕜 Beend	den (👍 BlueBox Date	nbank 📙
Von	01.02.2016	00:00:00	<u> </u>
bis	19.05.2016	23:59:59	🗄 🍯
11.04.	2016 13:23:02 2016 13:24:02	2	<u> </u>
 ✓ 11.04. ✓ 11.04. ✓ 11.04. ✓ 11.04. ✓ 11.04. 	2016 13:25:02 2016 13:26:02 2016 13:27:02 2016 13:28:02	TC1 TC2 TC3 TC4	
✓ 11.04. 11.04. 11.04. 11.04. 11.04.	2016 13:29:02 2016 13:30:02 2016 13:31:02 2016 13:31:02	TC5	15

蓿 TC.xls - OpenOffice Calc						
<u>D</u> atei	<u>B</u> earl	beiten	<u>A</u> nsicht	Einfügen	Eormat	Ex
	Α		В	С		
1		TOC	mg I-1	CSB mg	I-1	
2	TC1		1,56		7	
3	TC2		7,29		49	
4	TC3		19,7		113	
5	TC4		23,4		118	
6	TC5		27,1		141	
7						
0						

Berechnung der Kalibrierdaten

Die Berechnung der Kalibrierdaten erfolgt mit der Software ISA plus in der von der Software ISA plus manager erzeugten Projektdatenbank. Die Software ISA plus manager wiederum erzeugt dann aus der Projektdatenbank für jeden einzelnen Parameter Kalibrierdateien im **xml-Format** (mit SQI). Kalibrierdateien im **txt-Format** (ohne SQI) werden für jeden einzelnen Parameter von der Software ISA plus direkt aus der Projektdatenbank erzeugt. Gesamtablauf siehe *4.3.1 Übersicht Anwendungskalibrierung* und *4.3.2 Flussdiagramm der Anwendungskalibrierung*

Übertragung der Kalibrierdaten

Öffnen Sie das Sensor-Setup-Fenster des Parameters (hier als Beispiel CSB). Klicken Sie auf <Konfig>, es öffnet sich das **Konfigurationsfenster des Parameters**.

Name CSB	
Rommentar Parameter CSB	
Einheil ISA Sensor	NUN.
Vorkor Kalibrierung CSB	
Interva Änderung 14.03.2016 15:	59:00
Speick Optionen	EXtinktion[Wellenlänge] × Faktor
For Normalisiert auf 1/m	Offset 40.0056
EBerechung mit 1. Ableitung	504 -4.085923E+03
☐ Werte < 0 = 0	628 × 4.249374E+04
🧭 Quality	662 × -3.790440E+04
	200 X 0.000000E+00
<u>O U</u>	200 🔶 x 0.000000E+00
<u>≧ I</u> mport	Dertragen

Obertragen

Überträgt die Einstellungen über die BlueBox auf das Spektrometer-Sensormodul.

Die Anwendungskalibrierung ist abgeschlossen.

5 Wartung

5.1 Wartungshinweise

Voraussetzung für einen störungsfreien Betrieb ist ein sachgerechter Einbau des Messkopfes in den Messort, sowie die regelmäßige Kontrolle der Einbaubedingungen. Im Rahmen der Kontrolle ist eine Reinigung des Messkopfes durchzuführen. Diese Reinigung muss, den äußeren Einflüssen entsprechend, in hinreichend kurzen Intervallen erfolgen.

Das Messkopfkabel darf nicht in einem engeren Radius als 40 mm gebogen oder geknickt werden. Auch darf der Messkopf nicht an dem Messkopfkabel aufgehängt werden, hierfür sind die Schraubaugen am Messkopf vorgesehen.

Hier können regelmäßige Belastungen zur Beschädigung des Schutzmantels führen, was zum Ausfall des Spektrometers führen kann. Bei extremen Belastungen durch Medien mit Temperaturen oberhalb von 80 °C oder auch pH-Werten von kleiner 4 oder größer 10 sollte ein Schutz der Faser und hier insbesondere des Faseranschlusses durch eine geeignete Armatur gewährleistet sein. Hierdurch kann der ungestörte Betrieb des Systems auch bei extremen Medien über längere Zeitintervalle gewährleistet werden.

Beim Einbau des Messkopfes ist grundsätzlich so vorzugehen, dass der Faseranschluss keinen mechanischen Belastungen ausgesetzt wird.

Das Elektronikgehäuse ist so zu montieren, dass es weder direkter Sonneneinstrahlung, noch direktem Regen oder Schnee ausgesetzt wird. Direkte Sonneneinstrahlung kann zu extremen Temperaturen führen, was die Lebensdauer elektronischer Komponenten deutlich reduziert.

5.2 Wartungsempfehlungen

Obwohl der ISA-Messkopf sehr wartungsfreundlich ist, sind folgende Punkte zu beachten, damit der ISA-Messkopf immer einsatzbereit ist und zuverlässige Ergebnisse liefert:

- ▶ Regelmäßige manuelle Reinigung der Glasscheiben im Messpfad, siehe 5.3 Reinigung des Messkopfes
- ► Klarwasserkalibrierung alle 1 3 Monate
- ► Jährliche oder halbjährliche Kontrolle des Systems durch von GO Systemelektronik autorisiertes Fachpersonal
- Stellen Sie sicher, dass die Glasscheiben des Messkopfes immer in Flüssigkeit sind. Ein Austrocknen der Glasscheiben kann, je nach Flüssigkeit, einen Schmutzfilm hinterlassen und damit eine Reinigung nötig machen.
- Verwendung der Druckluftspülung
 Das Spektrometer sollte nicht ohne Druckluftspülung verwendet werden.

Hinweis: Das gemessene Medium fließt in den Druckluftkanal hinein. Falls das Messmedium dort längere Zeit steht, kann es zu einer Verstopfung des Druckluftkanals kommen. Falls Sie den Messkopf für längere Zeit lagern wollen, blasen Sie eventuelle Rückstände im Druckluftkanal kurz heraus.

5.3 Reinigung des Messkopfes

Durch die automatisierte Druckluftreinigung der Messstrecke erreicht der ISA sehr lange Standzeiten und Wartungsintervalle. Dennoch ist es erforderlich, die Glasscheiben im Messpfad regelmäßig per Hand zu reinigen. Das notwendige Reinigungsintervall kann je nach Einbauort, gegebener Schmutzbelastung und Einsatz der Druckluftspülung deutlich variieren (1 Woche bis 3 Monate).

Eine langsame, kontinuierliche Veränderung des SAK254 kann ein Hinweis auf zunehmende Verschmutzung der Glasscheiben sein.

Vorsicht: Benutzen Sie nie starke organische Lösungsmittel (z.B. Aceton), starke Säuren und Basen oder abschleifende Tücher, Bürsten und Stahlwolle!

Bitte beachten Sie: Jede unbefugte Zerlegung des Messkopfes führt zum Verlust der Gewährleistung.

Achten Sie bei der Reinigung auf eventuell anhaftende Partikel, die Sie vor dem Verwenden einer Bürste oder eines Tuches mit Druckluft entfernen sollten, damit die Glasscheiben bei der Reinigung nicht zerkratzen.

<u>/!</u>`

Ältere Messköpfe haben Glasscheiben aus Quarzglas. Neue Messköpfe haben Glasscheiben aus Saphirglas: Saphirglas ist beständiger als Quarzglas. Baujahr ≤ 2018 ⇔ Quarzglas Baujahr ≥ 2019 ⇔ Saphirglas Revisionsjahr ≥ 2019 ⇔ Saphirglas In Zweifelsfällen wenden Sie sich an GO Systemelektronik.

Vorsicht: Quarzglasscheiben sind nicht geeignet für den Kontakt mit starken organischen Lösungsmitteln (z.B. Aceton), starken Säuren und starken Basen.

5.3.1 Ablauf der Reinigung

Vorbereitung:

- 1. Schalten Sie die Druckluftspülung aus.
- 2. Stellen Sie die Messpfadlänge auf ≥ 15 mm und entfernen Sie alle Spacer (falls vorhanden).

Reinigung:

- 3. Tauchen Sie Messkopf und Spacer in Haushaltreiniger in Leitungswasser für ca. 5 Minuten ein. Entfernen Sie dann groben Dreck mit einer weichen Bürste oder einem Haushaltstuch.
- 4. Spülen Sie Messkopf und Spacer mit warmem Leitungswasser.
- 5. Setzen Sie eine warme (ca. 50 °C) Zitronensäurelösung (Konzentration 2 3 %) mit Leitungswasser an. Tauchen Sie Messkopf und Spacer für 10 – 15 Minuten in diese Lösung. Reinigen Sie dann den Messkopf und die Spacer in dieser Lösung. Reinigen Sie anschließend die Glasscheiben in dieser Lösung mit einer weichen Bürste oder einem Haushaltstuch.
- 6. Setzen Sie mit einem fettfreien alkalischen Laborglasreiniger eine warme (ca. 50 °C) Lösung (Konzentration 2 – 3 %) mit Leitungswasser an. Tauchen Sie Messkopf und Spacer für 10 – 15 Minuten in diese Lösung.
- 7. Spülen Sie Messkopf und Spacer mit Leitungswasser.
- 8. Setzen Sie die Spacer wieder ein und stellen Sie Messpfadlänge auf ihren ursprünglichen Wert.
- 9. Tauchen Sie den Messkopf für ca. 1 Minute in Leitungswasser. Schalten Sie kurz die Druckluftspülung ein, damit alle Rückstände aus den Luftdüsen herausgeblasen werden.
- 10. Schalten Sie die Druckluftspülung wieder aus.
- 11. Spülen Sie den Messkopf mit Leitungswasser.

Abschluss:

- 12. Spülen Sie den Messkopf mit VE-Wasser.
- Tauchen Sie den Messkopf in zweifach destilliertes Wasser.
 Bewegen Sie den Messkopf, um Luftblasen aus dem Messpfad zu entfernen.
- 14. Führen Sie eine Klarwasserkalibrierung aus. (siehe 4.2.6 folgende)
- 15. Kontrollieren Sie die ab hier aufgenommenen Extinktionsspektren. Falls ab 240 nm Abweichungen und/oder Drift größer als ± 0.008 feststellbar sind, gehen Sie zurück zu Schritt 11.
- 16. Schalten Sie die Druckluftspülung wieder ein, nachdem Sie den Messkopf in die Messposition gebracht haben.

Beachten Sie: Die Glasscheiben sind nur dann sauber, wenn das Signal der Rohspektren sich zwischen 10 und 30 deutlich von der X-Achse abhebt.

Ist der Signalwert der Rohspektren zwischen 10 und 30 kleiner als 500 counts, sind die Glasscheiben nicht sauber.

Messen Sie nur mit sauberen Glasscheiben!

Fehlermeldung am Display:

Achtung! Bitte Spektrometer reinigen!

Gehen Sie zurück zu Schritt 5.

6 Werksservice

Service spätestens alle 5 Jahre:

z.B. Trinkwasser, Umwelt, Ablauf von Kläranlagen, Wasser ohne besondere Belastungen wie hohe Schwebstoffanteile oder andere gelöste Stoffe.

Typisch ⇒ Messmedium-Temperaturen zwischen 0 bis 60 °C, pH-Werte zwischen pH 6 und 8

Service spätestens alle 2 Jahre:

Typisch ⇒ Messmedium-Temperaturen regelmäßig höher als 60 °C bis maximal 80 °C, pH-Werte zwischen pH 4 und 10

Service bei extremen Umständen:

Bei Temperaturen regelmäßig höher als 80 °C und pH-Werte kleiner als pH 4 und grösser als pH 10 sollte das Serviceintervall weiter verkürzt werden und der Faseranschluss sollte geschützt werden.

Bei pH-Werten kleiner als pH 2 und höher als pH 12 ist ein Schutz des Anschlusses des Messkopfkabels unumgänglich. Hier ist während der üblichen Reinigung eine gründliche Überprüfung der Dichtigkeit der Armatur und des Zustandes der mit dem Messmedium in Kontakt befindlichen Teile durchzuführen.

Insbesondere bei hohen Anteilen von Sand oder ähnlichem im Messmedium können die optischen Fenster höher belastet werden und müssen daher evtl. jährlich erneuert werden.

Fluorid greift Glas an; bei Verdacht auf Fluorid im Wasser bitte erst Rücksprache mit dem Betreiber halten.

Auf die durchgeführten Arbeiten im Rahmen der werkseitigen Servicearbeiten gewährt GO Systemelektronik GmbH einen Gewährleistungszeitraum von 6 Monaten für den gesamten revidierten Messkopf.

Die Lebensdauer der Xenon-Lampe und des Messkopfkabels ist höher als 5 Jahre.

7 Prozessspektrometer (Durchflusseinheit) Übersicht

Ältere Durchflusseinheiten haben Glasscheiben aus Quarzglas.

Neue Durchflusseinheiten haben Glasscheiben aus Saphirglas: Saphirglas ist beständiger als Quarzglas. Baujahr $\leq 2018 \Rightarrow$ Quarzglas Baujahr $\geq 2019 \Rightarrow$ Saphirglas Revisionsjahr $\geq 2019 \Rightarrow$ Saphirglas

In Zweifelsfällen wenden Sie sich an GO Systemelektronik.

Vorsicht: Quarzglasscheiben sind nicht geeignet für den Kontakt mit starken organischen Lösungsmitteln (z.B. Aceton), starken Säuren und starken Basen.

7.1 Inbetriebnahme und Basiskalibrierung

i i

∕!∖

Die Durchflusseinheit des Prozessspektrometers wird gereinigt und betriebsbereit ausgeliefert. Eine Erstreinigung ist nicht nötig.

Wenn Sie das Messsystem installiert haben, schalten Sie die Spannungsversorgung der BlueBox ein. Während der Initialisierung erkennt die BlueBox das Spektrometer automatisch.

Bei der ersten Inbetriebnahme muss eine **Basiskalibrierung** des Messsystems durchgeführt werden.

- Die Basiskalibrierung dient dazu, den Messbereich des Spektrometers optimal auszunutzen.
 - Die Digitalwerte (Counts) der Rohspektren werden durch drei Gegebenheiten beeinflusst:
 - o die Auflösung des AD-Wandlers, hier 0 bis 32000
 - o die Anzahl der Lichtblitze pro Einzelmessung (Intensität)
 - o das Messmedium

Hinweis: Jede Änderung am Messaufbau erfordert eine Neukalibrierung.

Basiskalibrierung:

Die Intensitätskalibrierung des Prozessspektrometers unterscheidet sich von der Intensitätskalibrierung des ISA darin, dass die Einstellung der Messpfadlänge mangels Möglichkeit entfällt.

Die Basiskalibrierung besteht aus 2 Schritten:

- 1. Führen Sie die Intensitätskalibrierung aus. siehe 4.2.5 Intensitätskalibrierung (Lichtintensität)
- 2. Führen Sie die Klarwasserkalibrierung aus. siehe 4.2.6 Klarwasserkalibrierung mit dem Programm AMS

Auf die Basiskalibrierung folgt die anwendungsspezifische Kalibrierung. siehe 4.3 Anwendungskalibrierung.

7.2 Wartung

Das Prozessspektrometer wird wie das ISA-Spektrometer behandelt. Der Unterschied besteht in der händischen Reinigung des Prozessspektrometers.

7.2.1 Wartungsempfehlungen

Folgende Punkte sind zu beachten, damit das Prozessspektrometer immer einsatzbereit ist und zuverlässige Ergebnisse liefert:

- ► Klarwasserkalibrierung alle 1 3 Monate
- Jährliche oder halbjährliche Kontrolle des Systems durch von GO Systemelektronik autorisiertes Fachpersonal
- Stellen Sie sicher, dass die Glasscheiben des Spektrometers immer in Flüssigkeit sind. Ein Austrocknen der Glasscheiben kann, je nach Flüssigkeit, einen Schmutzfilm hinterlassen und damit eine Reinigung nötig machen.
- Verwendung der Druckluftspülung
 Das Spektrometer sollte nicht ohne Druckluftspülung verwendet werden.
 Verwenden Sie nur ölfreie Kompressoren.
- **Hinweis:** Das gemessene Medium fließt in den Druckluftkanal hinein. Falls das Messmedium dort längere Zeit steht, kann es zu einer Verstopfung des Druckluftkanals kommen. Falls Sie den Messkopf für längere Zeit lagern wollen, blasen Sie eventuelle Rückstände im Druckluftkanal kurz heraus.

Vorsicht: Lichtwellenleiter nicht knicken!

7.2.2 Reinigung des Prozessspektrometers

Falls eine Reinigung ohne Demontage der Spektrometeroptik nicht das gewünschte Ergebnis hat, muss die Spektrometeroptik im ausgebauten Zustand gereinigt werden.

Schalten Sie die Druckluftspülung aus.

7.2.2.1 Reinigung ohne Demontage der Spektrometeroptik

- Befüllen Sie das Prozessspektrometer für ca. 5 Minuten mit Haushaltreiniger in Leitungswasser. Reinigen 1. Sie dann das Innere des Spektrometers durch die Wartungsschrauben mit einer passenden weichen Flaschenbürste. Leeren Sie das Spektrometer.
- 2. Spülen Sie das Spektrometer mit warmem Leitungswasser.
- 3. Setzen Sie eine warme (ca. 50 °C) Zitronensäurelösung (Konzentration 2 – 3 %) mit Leitungswasser an. Befüllen Sie das Spektrometer für 10 – 15 Minuten mit dieser Lösung. Reinigen Sie dann das Innere des Spektrometers dann in dieser Lösung durch eine Wartungsschraube mit einer passenden weichen Flaschenbürste. Leeren Sie das Spektrometer.
- Setzen Sie mit einem fettfreien alkalischen Laborglasreiniger eine warme (ca. 50 °C) Lösung (Konzentra-4. tion 2 – 3 %) mit Leitungswasser an. Befüllen Sie das Spektrometer für 10 – 15 Minuten mit dieser Lösung. Leeren Sie das Spektrometer.
- Befüllen Sie das Spektrometer für ca. 1 Minute mit Leitungswasser. Schalten Sie kurz die Druckluftspü-5. lung ein, damit alle Rückstände aus den Luftdüsen herausgeblasen werden.
- 6. Schalten Sie die Druckluftspülung wieder aus.
- 7. Spülen Sie das Spektrometer mit Leitungswasser.

Abschluss:

- Befüllen Sie das Spektrometer mit zweifach destilliertem Wasser. 8.
- Führen Sie eine Klarwasserkalibrierung aus. (siehe 4.2.6 folgende) 9.
- 10. Kontrollieren Sie die ab hier aufgenommenen Extinktionsspektren. Falls ab 240 nm Abweichungen und/oder Drift größer als ± 0.008 feststellbar sind, gehen Sie zurück zu Schritt 7.
- 11. Schalten Sie die Druckluftspülung wieder ein, nachdem Sie den Sensor in die Messposition gebracht haben.

Beachten Sie: Die Glasscheiben sind nur dann sauber, wenn das Signal der Rohspektren sich zwischen 10 und 30 deutlich von der X-Achse abhebt.

Ist der Signalwert der Rohspektren zwischen 10 und 30 kleiner als 500 counts, sind die Glasscheiben nicht sauber.

Messen Sie nur mit sauberen Glasscheiben!

Achtung!

Bitte Spektrometer reinigen!

Gehen Sie zurück zu Schritt 3.

Fehlermeldung am Display:

Falls erneute Reinigungen erfolglos bleiben, ist die Optik im ausgebauten Zustand zu reinigen. Bei unsachgemäßem Umgang kann der Ein- und Ausbau der Optik das Gerät beschädigen!

7.2.2.2 Reinigung mit Demontage der Spektrometeroptik

Demontage der Spektrometeroptik: Der in Schritt 5 und 6 benötigte Auszieher ist ein M8 Gewindebolzen o.ä.

1. Lösen Sie die Glasfaserkabelhalterung mit der Rändelschraube.

3. Schützen Sie das Glasfaserkabel mit einer Schutzkappe o.ä.

5. Schrauben Sie das Gewinde des Ausziehers in das Gewinde des Optikträgers.

2. Ziehen Sie das Glasfaserkabel an der Glasfaserkabelhalterung vorsichtig heraus.

Achten Sie auf den O-Ring!

4. Lösen Sie die Inbusschrauben des Optikdeckels.

6. Ziehen Sie den Optikträger am Auszieher vorsichtig heraus. Achten Sie auf die O-Ringe!

Germany Tel.: +49 431 58080-0 info@go-sys.de

49 431 58080-0 Fax: -58080-11 go-sys.de

Vorsicht: In die Innenseite des Optikträgers darf auf keinen Fall Schmutz oder Flüssigkeit eindringen!

Dichten Sie den Optikträger entsprechend ab.

Vorsicht: Benutzen Sie nie starke organische Lösungsmittel (z.B. Aceton), starke Säuren und Basen oder abschleifende Tücher, Bürsten und Stahlwolle!

Bitte beachten Sie: Jede unbefugte Zerlegung des Messkopfes führt zum Verlust der Gewährleistung.

Achten Sie bei der Reinigung auf eventuell anhaftende Partikel, die Sie vor dem Verwenden einer Bürste oder eines Tuches mit Druckluft entfernen sollten, damit die Glasscheiben bei der Reinigung nicht zerkratzen.

Reinigung:

- 1. Spülen Sie das Äußere der Glasscheibe mit warmem Leitungswasser.
- Setzen Sie eine warme (ca. 50 °C) Zitronensäurelösung (Konzentration 2 3 %) mit Leitungswasser an. Tauchen Sie das Äußere der Glasscheiben für 10 – 15 Minuten in diese Lösung. Reinigen Sie dann in dieser Lösung das Äußere der Glasscheibe mit einer weichen Bürste oder einem Haushaltstuch.
- 3. Setzen Sie mit einem fettfreien alkalischen Laborglasreiniger eine warme (ca. 50 °C) Lösung (Konzentration 2 – 3 %) mit Leitungswasser an. Tauchen Sie das Äußere der Glasscheibe für 10 – 15 Minuten in diese Lösung.
- 4. Spülen Sie das Äußere der Glasscheibe mit Leitungswasser.
- 5. Tauchen Sie das Äußere der Glasscheibe für ca. 1 Minute in Leitungswasser.
- 6. Spülen Sie das Äußere der Glasscheibe mit Leitungswasser.
- 7. Wiederholen Sie die Reinigung am zweiten Optikträger.

Abschluss:

- 9. Montieren Sie die Optikträger in umgekehrter Reihenfolge der Demontage.
- 10. Spülen Sie das Spektrometer mit VE-Wasser.
- 11. Befüllen Sie das Spektrometer mit zweifach destilliertem Wasser.
- 12. Führen Sie eine Klarwasserkalibrierung aus. (siehe 4.2.6 folgende)
- 13. Kontrollieren Sie die folgenden Extinktionsspektren. Falls ab 240 nm Abweichungen und/oder Drift größer als ± 0.008 feststellbar sind, gehen Sie zurück zu Schritt 10.
- 14. Schalten Sie die Druckluftspülung wieder ein, nachdem Sie den Sensor in die Messposition gebracht haben.

7.3 Werksservice

Service spätestens alle 5 Jahre:

z.B. Trinkwasser, Umwelt, Ablauf von Kläranlagen, Wasser ohne besondere Belastungen wie hohe Schwebstoffanteile oder andere gelöste Stoffe.

Typisch ⇒ Medium Temperaturen zwischen 0 bis 60 °C, pH-Werte zwischen pH 6 – 8

Service spätestens alle 2 Jahre:

Typisch ⇒ Medium Temperaturen regelmäßig höher als 60 °C bis maximal 80 °C, pH-Werte zwischen pH 4 – 10

Service bei extremen Umständen:

Bei Temperaturen regelmäßig höher als 80 °C und pH-Werte kleiner als pH 4 und grösser als pH 10 sollte das Serviceintervall weiter verkürzt werden.

Insbesondere bei hohen Anteilen von Sand oder ähnlichem im Messmedium können die optischen Fenster höher belastet werden und müssen daher evtl. jährlich erneuert werden.

Fluorid greift Glas an, bei Verdacht auf Fluorid im Wasser bitte erst Rücksprache mit dem Kunden halten.

Auf die durchgeführten Arbeiten im Rahmen der werkseitigen Servicearbeiten gewährt GO Systemelektronik GmbH einen Gewährleistungszeitraum von 6 Monaten für das gesamte revidierte Prozessspektrometer. Voraussetzung für die Garantie ist eine Verwendung gemäß der Produktbestimmung. Dazu gehört unter anderem, dass die in dieser Bedienungsanleitung beschriebenen Betriebsverfahren und Hinweise befolgt werden.

Die Lebensdauer der Xenon-Lampe und des Messkopfkabels ist höher als 5 Jahre.

8 BlueScan

Bedienung, Inbetriebnahme, Wartung und Service sind, bis auf die Einstellung des Messspaltes (siehe *8.1 Einstellen der Messspaltlänge*), nahezu identisch mit der des ISA-Spektrometers (siehe Kapitel 3 bis 6).

Unterschiede zum ISA-Messkopf: Der BlueScan-Messkopf ist besonders kompakt; der Messspalt wird ausschließlich mit Distanzscheiben eingestellt.

Die Produkte von GO Systemelektronik werden ständig weiterentwickelt, daher können sich Abweichungen zwischen dieser Bedienungsanleitung und dem ausgelieferten Produkt ergeben. Bitte haben Sie deshalb Verständnis, dass aus dem Inhalt dieser Bedienungsanleitung keine juristischen Ansprüche abgeleitet werden können.

Messkopf BlueScan Artikel-Nr. 461 6008

Einstellen der Messspaltlänge siehe nächste Seite

8.1 Einstellen der Messspaltlänge

Messkopf BlueScan - Messspalteinstellung mit den Distanzscheiben

Messpfad = 2x Messspalt

	Scheibendicke [mm]						Schrauben M3 DIN 912 A4	
Messspalt [mm]	0,5	1	2	2	5	10	Länge [mm]	Artikelnr.
14,5							C	225 0251
14	х						Ø	335 0351
13,5		х					8	335 0359
13	х	х						
12,5			х					
12	х		х					
11,5		х	х				10	335 0353
11	х	х	х					
10,5			х	х				
10	х		х	х				
9,5					х		12	335 0354
9	х				х			
8,5		х			х			
8	х	х			х			
7,5			х		х		14	335 0384
7	х		х		х			
6,5		х	х		х			
6	х	х	х		х			
5,5			х	х	х		16	335 0377
5	х		х	х	х			
4,5						х		
4	х					х		
3,5		х				х	18	335 0375
3	х	х				х		
2,5			х			х		
2	х		х			х		
1,5		х	х			х	20	335 0385
1	х	х	х			х		
0,5			х	х		х		

Anhang – ISA Parameterberechnung Tipps für hochgenaue Anwendungskalibrierungen

0

Die hier beschriebenen Verfahren erfordern qualifiziertes Personal.

Allgemeines

Die mit ISA-Spektraldaten berechneten Parameter können eine Genauigkeit von 5 % (typisch 5 % – 10 %) erreichen, wenn gute Kalibrierverfahren befolgt werden.

In der Praxis kann die Genauigkeit durch eine Änderung der Wassermatrix variieren. Wenn die Wassermatrix eine hohe Variabilität aufweist, z.B. Tag/Nacht oder saisonale Schwankungen, muss diese analysiert werden und es sollten Proben aus diesen verschiedenen Wassermatrizen entnommen werden. An schwierigen Stellen kann das System mit speziellen Kalibrierungen auf die unterschiedlichen Wassermatrizen reagieren. Veränderungen in der Wassermatrix können durch andere Parameter wie Leitfähigkeit, pH-Wert, Temperatur usw. erkannt werden.

- 1. Die Genauigkeit der berechneten Parameter der Spektraldaten wird immer von der Qualität der Kalibrierung beeinflusst. Eine höhere Anzahl von Kalibrierpunkten führt zu einer genaueren Kalibrierung!
- 2. Die Kalibrierreferenzen müssen den gesamten Messbereich abdecken. Für eine Kalibrierung mit guter Qualität sollten mindestens 20 Probenpunkte in die Kalibrierung einbezogen werden.
- 3. Die analytische Methode und die Qualität des Verfahrens ist einer der wichtigsten Faktoren für die Genauigkeit der Berechnung! Die Genauigkeit der ISA-Parameterkalibrierung hängt von der spezifischen Genauigkeit der chemischen Methode für den Parameter ab. Das bedeutet, dass die Bewertung des Wertes mit der gleichen Methode erfolgen muss und das Ergebnis von Schwankungen in beiden abhängig ist. Die Genauigkeit der Laboranalyse muss im besten Fall zehnmal höher sein als die für die Parameterkalibrierung definierte Genauigkeit!
- 4. Die Kalibrierung muss über einen längeren Zeitraum, z.B. eine Woche, getestet und verifiziert werden. Durch diesen Langzeittest kann die Stabilität der Wassermatrix und damit die Stabilität der Kalibrierung verbessert werden.
- 5. Für Messungen mit hohem Genauigkeitsstandard ist die Wartung des Systems zu definieren. Das System muss in festgelegten Zeitabständen gereinigt und neu kalibriert werden. Das Intervall der Wartungsarbeiten wird direkt von der Messstelle beeinflusst und kann von Wochen bis zu mehreren Monaten variieren.

Praktische Tipps

In Bezug auf Punkt 3 oben ist eines der wichtigsten Dinge, die man bei der Durchführung einer Kalibrierung des ISA gegen verschiedene Parameter beachten sollte, wie schnell und genau die Proben von einem Labor auf ihre CSB/BSB/TSS-Werte analysiert werden, nachdem man das optische Spektrum der Proben mit dem ISA erhalten hat. So kann es z.B. sehr wichtig sein, dass die Proben kühl oder vor Sonnenlicht geschützt aufbewahrt werden, damit sich die biologischen Parameter nicht verschlechtern!

Beachten Sie:

- Die Zeit zwischen Probe und ISA-Spektrum muss minimiert werden (Δt).
- Der Abstand zwischen dem Punkt der Probenentnahme und dem ISA muss minimiert werden (Δs).
- Achten Sie bitte auch darauf, dass die Referenzwertepaare möglichst gleichmäßig über den gesamten zu erwartenden Messbereich verteilt sind. Beispiel: Wenn Sie CSB im Bereich von 0 – 2000mg/l messen wollen, dann nehmen Sie die Proben so auf, dass die CSB-Werte über den gesamten Bereich von 0 – 2000mg/l verteilt sind, und nicht im Bereich von 300 – 700 mg/l konzentriert sind.

Wenn Sie nur Proben aus einem kleinen Ausschnitt des Messbereiches erhalten können, dann versuchen Sie bitte als letztes Mittel die Proben anzureichern oder zu verdünnen, um höhere oder niedrigere Konzentrationen zu erhalten.

Beispiel: Anreichern der normalen Probe mit möglichen Kontaminationsquellen,

um die Parameterkonzentration zu erhöhen.

Beispiel: Verdünnen der Probe mit normalem Trinkwasser aus der Umgebung, um die Parameterkonzentration zu verringern

Probenentnahme und Spektrenaufnahme

Außer in Spezialfällen erfolgen die Probenentnahme und die Aufnahme von Spektren für Kalibrierzwecke nach einem der folgenden drei Ansätze.

Ansatz 2:

Germany

Tipps für hochgenaue Anwendungskalibrierungen

Optimierung der Kalibrierung

Unter Bezugnahme auf Punkt 4 unter *Allgemeines* kann die mit 25 Proben durchgeführte Erstkalibrierung verfeinert werden, indem zusätzliche Proben nach dem obigen Ansatz 1 gewonnen werden. Die neu erhaltenen Daten (Referenzwertpaare) können dem ursprünglichen Kalibrierungsdatensatz hinzugefügt werden, wodurch Sie eine noch genauere Kalibrierungsformel erhalten.

Wir empfehlen, jede Woche mindestens ein neues Referenzwertepaar zu ermitteln. Dieses kann im Rahmen der normalen Wartung erfolgen.

> Bei Fragen: service@go-sys.de +49(0)431-58080-17 GO Systemelektronik GmbH